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Abstract: The unionized form of tetraphenylporphine complexes alkali metal salts in acetone with association 
constants ranging from 6.0 to 60 M-t. 

In 1967, Pedezson reported the properties of a series of synthetic multidentate macrocyclic compounds now 

commonly referred to as crown ethers.1 These neutral species, as well as subsequently reported congeners, bind a 

variety of charged compounds including metal and ammonium salts. Although porphyrins are also able to complex 

metal ions, this process generally proceeds via the concomitant loss of the two inner pyrrolenine NH protons. 

However, we report herein that a simple unionized porphyrin can also serve as a complexing agent for alkali metal 

salts. 

Upon treatment of tetraphenylporphine2 with two equivalents of NaB(C&5)4, the inner pyrrolenine NH 

protons of the porphyrin experience a downfield chemical shift of 0.267 ppm.3 This alteration in chemical shift is 

reversed upon addition of 18-crown-6. thereby demonstrating that it is the metal ion which is responsible for the 

observed NMR behavior. Analogous results were obtained with lithium, sodium, and potassium iodides. This 

dramatic response in chemical shift implies that the alkali metal ions are not only bound to the porphyrin, but are in 

close proximity to the pyrrolenine nitrogen atoms. 

23Na NMR linewidth measurements are also consistent with the notion that alkali metal ions interact with 

tetraphenylporphine. Upon addition of trifluoroacetic acid (final concentration: 5%) to a 2:l mole ratio of 

NaB(C&)4:potphyrin, a 10% decrease (from 22.44 Hz to 20.05 Hz) in the linewidth of the 23Na NMR signal 

was observed, suggesting that the complex had been disrupted.4 Since the porphyrin is protonated under these 

conditions, it is not surprising that the sodium cation is no longer associated with the porphyrin moiety. In the 

absence of the porphyrin, uifluoroacetic acid induces a 20% increase (from 13.28 Hz to 15.83 Hz) in the linewidth 

of the 23Na NMR signal.5 This increase may be indicative of ion pairing with trifluoroacetate. Consequently, ion 

pairing effects may contribute, along with protonation of the porphyrin, to the disruption of the metakporphyrin 

complex. Whether disruption of the complex is a consequence of protonation and/or ion pairing, these results 

demonstrate that the metal ion is associated with the porphyrin moiety. 

The alkali metal salts also induce an observable increase in the extinction coefficient of the porphyrin Somt 

band in the W-vis spectrum (absorbance measurements performed at 414 nm). Consequently, association 

constants were obtained via UV-vis spectrophotometry. The Scatchard plots for the formation of the NaB(C&I5)4, 

NaI, and KI complexes of tetraphenylporphine proved to be nonlinear and concave. which is consistent with the 

notion that an unionized porphyrin can bind mom than one alkali metal ion. The association constants (table 1) were 

extracted from Scatchard plots,6 assuming a two step binding process (which has been previously reported for a 

porphyrin-containing supramolecular complex7). Interestingly, for all three alkali salts, the equilibrium constants 

associated with the second step (K2) are smaller than those obtained for the formation of the 1:l complexes (KI). 

5873 



5874 

Negative cooperativity for this two step binding process is not unexpected, since the fit bound alkali cation should 

decrease the electron density associated with the metal binding site of the porphyrin (confirmed by the downfield 

chemical shifts observed in the 1H NMR spectra - vi& sup-a) and thereby deemase the affinity of the porphyrin for 

the second alkali cation. 

LiI, like its sodium and potassium counterparts, interacts with the unionixed tetraphenylporphyrin to produce 

a metal-porphyrin complex. However, LiI in large excess generates a previously described ionized dilithium 

metalloporphyrin.*-9 The fact that this behavior is not observed with equivalent concentrations of sodium and 

potassium salts is intriguing and may be a consequence of the lithium ion’s comparatively high charge-to-mass 

ratio.t* This “proton-like” characteristic may enable lithium to efficiently replace the NH protons contained within 

the porphyrin macrocycle. 

On the basis of the above experiments, we propose that the 2: 1 alkali metal ionporphyrin complexes possess 

the structure depicted in 1. It seems likely that the cations would be positioned on opposite faces of the porphyrin, 

which would partially alleviate deleterious electrostatic interactions between the two metal ions. In addition, since 

the pyrrole moieties in the corresponding free base and diprotonated forms of teuaphenylporphine are known to be 

tilted out liom the best mean plane of the nitrogens,t * it is reasonable to conclude that an analogous conformation 

exists for the bimetallic complex 1 (ie. each alkali metal iv: is interacting with just two of the four nitrogens). 

1 
The 2: 1 complex 1 bears some resemblance to the sitting-atop complexes of Fleischer and Wang.12 These 

investigators proposed that transition metal ions associate with the unionized dimethyl ester of protoporphyrin in a 

1:l stoichiometry. This so-called “sitting-atop” phenomenon has subsequently generated a great deal of 

controversy.13 Much of the discussion has centered on the striking resemblance of the visible spectra of 1:l 

transition metahporphyrin sitting-atop complexes to that of the corresponding diprotonated porphyrin. Consequently 

it has been suggested that what has actually been observed is simply the diprotonated porphyrin. However, in 

contrast to the controversy that has surrounded the transition metal-based sitting-atop complexes, it is not possible to 
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confuse the alkali metal ionporphyrin complexes described in this paper with a diprotonated porphyrin. The four- 

banded visible spectrum observed for the free base porphyrin is retained in the presence of excess sodium or 

potassium salt.14 In contrast, dipmtonated porphyrins exhibit a two-banded spectrum. This is attributed to a D4h 

symmetry associated with the dipmtonated form and a Da symmetry affiiated with the free base form.15 Since the 

2: 1 alkali metalporphyrin complexes described herein exhibit a four-banded spectrum, this suggests that when alkali 

metal ions interact with the metal hhxling site, the complex tt%ins a Da symmetry. 

In summary, we have found that the free base form of tetraphenylporphine serves as a host for alkali metal 

salts. Such behavior appears to confii Fleischer and Wang’s original proposal that metal ions are capable of 

forming weak complexes with free base porphyrins. 
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